How We Use 3D Printing to Develop a Better Product


3D printing has been a key technology for product prototyping for well over a decade. In the last few years, however, the quality of 3D printed parts has improved so much, that it is even playing a role in manufacturing. At the same time, cost and print time has come down so much, that you can think of a part in the morning and have a functional prototype before sunset. The ability to iterate quickly results in faster time to market and higher quality products. That’s why at Bold Type, we try to design and 3D print prototypes within the first 2-3 weeks of a project.

Here at Bold Type, we specialize in product development for connected wireless medical devices and we’re firm believers in testing as early as possible.  We use 3D printing all the time so we can get a product prototype in front of the users. That prototype is going to let us see exactly how the user is going to interact with the product, what usability challenges may exist, whether the design is appropriate for the intended use, or if there is the potential for mechanical risks.  This helps limit the number of costly mistakes that crop up later in the process or – worst case scenario – prevents the launch of a product that users just don’t feel comfortable using.

3D printing helps not only with improving the user experience, but with streamlining time to market as well. Anyone who’s taken products to volume production knows that tooling can be an expensive and time-consuming part of the process, so it’s extremely important to ensure that when you’re ready for the tooling phase, you get everything right in the first try. You need to make sure that all the parts fit together correctly, that all the different components fit together properly, that you’re not going to have some weird misalignment problem between the board and the mechanical housings or between two components in the mechanical housings.

Of course, 3D printed parts are not the only option when rapid prototyping is required. For functional prototypes that look and feel more like injection molded mass production parts, we often use cast urethane prototypes. Even then, however, 3D printed parts often function as the “master pattern”. The combination of these two technologies, allow us to prototype parts that look nearly identical to the final product in just 1-2 weeks instead of 2-4 months.

3D printing can also play a role in the regulatory strategy for medical devices. Manufacturers need to demonstrate that they are following FDA design controls requirements and following a process to mitigate risk. Usability testing is also part of developing medical devices, and the best products are a result of formative usability studies that guide the design process, and summative usability studies that validate a product meets its intended use. Performing user research early and often demonstrates to FDA that you’re serious about ensuring great usability and mitigating risks, and 3D printing helps you do that.

A more recent and exciting trend in 3D printing is actual manufacturing. For a long time, 3D printed parts have been intended for prototyping, but not production. This is primarily due to the relatively high cost at higher volumes when comparted to injection molding. A secondary limitation has been that the quality and strength of the parts is not as good as molded parts. Where 3D printing shines, however, is in its customizability. If you need to make 1,000,000 identical devices, injection molding is probably the way to go. But if your product needs to be customized for each patient, injection molding is simply not practical. In these cases, 3D printing opens the door to entirely new product concepts that are optimized for each user. The challenge in these cases will come in performing process validation on the manufacturing side, but fortunately there is now plenty of precedent, and we have partners who specialize in precisely this field.

At Bold Type, we specialize in the hardware and software components of wireless connected medical device development – housings, electronics, embedded software, mobile apps, web applications, cloud connectivity, and cybersecurity. A big part of our success is our ability to get to the user testing phase early, gathering that feedback to make sure that we design the product to fit the client need. Incorporating a key technology such as 3D printing allows us to build the right product for the client, with minimal risk and in full regulatory compliance.