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Abstract—Since its invention in 1922, the super-regenerative am-
plifier (SRA) has been used in a variety of short-range, low-power,
and/or low-cost wireless systems due to its simple implementation
and excellent performance for a given power budget. Growing de-
mand for ultralow-power receivers for short-range radios has re-
cently reawakened an interest in the theory and design of SRAs.
Building on recent work and using reasonable assumptions and ap-
proximations, we present a frequency-domain model for analyzing
SRAs. We then use these models to predict the response of an SRA
to arbitrary deterministic and stochastic signals including sinu-
soids, pulsed-sinusoids, and additive white Gaussian noise. Using
the results, we present formulas for calculating the sensitivity and
selectivity of SRAs. We also introduce the concept of a trigger-time
that is particularly useful for accurately determining the optimal
threshold in on-off keying (OOK) receivers and helps avoid the
problems introduced by nonlinearity in SRAs. Finally, we present
a prototype OOK SRA that achieves a sensitivity of �� dBm at a
bit rate of 300 kbps (BER of �� �) while consuming 500 W, and
show that its measured sensitivity matches theory within 1 dB.

Index Terms—Super-regenerative amplifier (SRA), super-regen-
erative receiver, low power, oscillators, short-range radio.

I. INTRODUCTION

T HE super-regenerative amplifier(SRA)/receiver was first
introduced by Edwin Armstrong in 1922 [1] as an ex-

citing development in communications systems. Although it
never gained the popularity of the superheterodyne receiver,
recent growth in low-power, short-range wireless links has
reawakened an interest in SRAs due to their excellent sensi-
tivity for small amounts of dc power consumption [2]–[7]. The
general concepts behind the operation of SRAs are intuitive, but
the theory necessary for quantitative analysis tends to be math-
ematically tedious due to its nonlinear, time-varying nature.
Thorough time-domain solutions have been available since the
1950s [8], and more recent work has focused on generalizing
those results to generic SRAs [4]. Other recent work has shown
the capacity to operate SRAs synchronously, improving the
selectivity and data rate of SRA receivers [5], and the benefits
of pulse-shaping OOK signals to optimize the sensitivity of an
SRA receiver [9], [10]. Building on these works, we propose a
convolution model that allows for frequency-domain analysis
of SRAs. We then show that frequency-domain methods allow
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for straightforward analysis of arbitrary deterministic and
stochastic input signals, and use various examples that lead to
complete sensitivity equations.

As explained in [8], the SRA can be operated in four gen-
eral modes combining the choices of slope-controlled versus
step-controlled and linear versus logarithmic modes. The first
choice describes the type of quench signal or damping function
used, and the second choice describes whether the SRA output
is limited to small values that prevent nonlinearities, or if its
amplitude is permitted to grow to the point of compression. The
subtleties of the slope- versus step-control modes will be ex-
plained in Section II, but we note that the analysis presented here
is restricted to the slope-controlled mode. This method has been
of greatest interest in recent literature because it offers benefits
in both sensitivity and selectivity. Also, we focus our analysis
mostly on the linear mode of operation. However, we introduce
the concept of a trigger-time in Section IV-C, which is relevant
to both the linear and the logarithmic modes of operation.

The paper is divided into five main sections. Section II briefly
describes the general theory of the SRA and recounts the time-
domain solution for its differential equation. Section III presents
a convolution model of the SRA and uses it to find an SRA’s re-
sponse to various deterministic signals. Section IV shows how
the convolution model can be used to find the SRA’s response to
additive white Gaussian noise (AWGN) and uses the results to
calculate the expected bit error rate (BER) and sensitivity of an
OOK receiver. It also introduces the concept of a trigger-time
which can be used to accurately set the optimum threshold and
detect signals in an OOK receiver while avoiding the problems
usually caused by nonlinearity. Section V describes a test circuit
used to verify the theory presented and compares measured re-
sults to those predicted using the convolution model. Section VI
summarizes the key concepts and concludes the paper.

II. GENERAL SRA THEORY

A. Circuit Model and Block Diagram for SRA

Fig. 1 shows the simplified (a) circuit model and (b) feed-
back model for an RLC-based SRA. The parameters of interest
for the resonant RLC tank are: , the resonant frequency, ,
the characteristic impedance, , the quality factor, and , the
quiescent damping factor. The relationships between these pa-
rameters and the circuit components are

(1)

(2)

(3)
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Fig. 1. (a) SRA circuit model and (b) SRA feedback loop model.

Using these parameters, the impedance for a parallel resonant
tank can be written as

(4)

If varies slowly enough with respect to , such that
the system in Fig. 1 is quasi-static, we can define a time-varying
transfer function for the feedback loop shown in Fig. 1(b) by

(5)

which can be rewritten as

(6)

where is the instantaneous damping factor or damping
function and is defined as

(7)

Note that (6) only differs from (4) in the denominator where
is replaced by . This is because the positive feedback from
transconductance can be modeled as a negative resis-
tance that only affects the damping factor of the second-order
system in Fig. 1.

B. SRAs as Time-Varying, Second-Order Systems

An SRA differs from a linear time-invariant (LTI) system
in that its poles are periodically shifted between the left-hand
side and right-hand side of the complex plane by varying the
damping function . The exact function used to define
determines the characteristics of the SRA’s response to an input
signal, and various functions can and have been used [3], [7]. As
an example, Fig. 2 shows the instantaneous value of the poles
of an SRA as is linearly varied during one cycle using a
ramp function. As will be shown, for each period, the resulting
time-varying system yields a filtered and amplified sample of
its input signal’s envelope. Unlike LTI systems whose filtering
qualities are strictly dependent on the static location of their

Fig. 2. Time-varying pole/zero locations for an SRA as the damping function
changes.

poles and zeros, the filtering qualities of SRAs additionally de-
pend on the characteristics of the damping function used to vary
their pole locations. Furthermore, in contrast with LTI systems,
SRAs exploit the instability portion of their cycle to achieve
very high gain despite using active components that provide rel-
atively small gain.

C. General SRA Solution for Linear Mode Operation

Historically, SRAs have been used in either the linear or log-
arithmic mode [4], [8]. In the linear mode, the SRA is config-
ured such that its output remains small enough throughout each
quench cycle to prevent significant nonlinearities. As a result,
the envelope of the SRA’s output is proportional to the ampli-
tude of the input signal. In the logarithmic mode, the SRA is
configured such that its output saturates during each cycle. The
integral of its envelope is then proportional to the logarithm of
the input signal’s amplitude. The following analysis is valid for
the linear mode, but later discussions will show how the results
can be used to accurately model an SRA that is allowed to enter
compression.

Using (6) we can write the following differential equation to
describe the LTV model of the SRA in Fig. 1:

(8)

A more general version of (8) and its thorough solution can be
found in [4], where the general solution is broken down into
the sum of the free response and the forced response. The fol-
lowing analysis assumes that the free response is zero. In a
practical implementation, this means that any oscillation from
a previous cycle is quenched before time when a new cycle
begins. This simplifies the mathematics, but more importantly,
it improves the performance of the receiver since it ensures
that each cycle is independent of all previous cycles. Mathe-
matically, the quenching is done by allowing the poles to re-
main in the left-hand side long enough for the envelope of the
output voltage to decay below the noise levels. To expedite the
decay, the poles can be pushed far to the left, or equivalently,
the damping function can be made a large positive value. Prac-
tically, this can be done by briefly shorting the tank as in [11] or
by reducing the transconductance, , to a very low value
as in [2].

The general solution found in [4] can be modified for the
specific case of an RLC-based SRA with an input current ,
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resulting in the output voltage

(9)

In (9), is defined such that it is positive for and
negative for as in Fig. 2. The solution can be broken
down into the time-dependent gain and the filtering term

(10)

where

(11)

(12)

(13)

The gain component reaches its peak at and
its maximum value is referred to as the super-regener-
ative gain [8]. The term is referred to as the sensitivity
function and has a peak value of unity at . For common
damping functions it decays rapidly outside of a time window
concentrated about , limiting the effect of the input signal

outside of that window. This quality will be exploited
in Section III to approximate by a convolution and per-
form frequency-domain analysis of the SRA. For slope-con-
trolled SRAs, changes slowly enough that multiple periods
of the input signal occur during the sensitivity period [8]. If

changes from positive to negative abruptly, the SRA is said
to be operating in the step-controlled region and has a signifi-
cantly different frequency response. The subsequent analysis as-
sumes the SRA is operated in the slope-controlled mode, which
is preferable as it achieves better sensitivity and selectivity [8].

D. SRA Solution for a Ramp and Sine Damping Functions

Almost any arbitrary shape can be used as the damping func-
tion as long as it is positive for and negative for

. Two common waveforms in slope-controlled SRAs
are the ramp (or sawtooth) and the sine-wave [3]–[5], [7], [9],
[11]. The ramp damping function proves particularly useful for
analysis since it leads to Gaussian equations that have closed-
form solutions. Furthermore, it achieves higher gain and has a
frequency response preferable to that of sine-wave damping as
discussed in this section and Section III-B.

For the time span , the ramp damping function
has the form

(14)

where is its slope and has units of . Substituting (14) into
(11) and (13) results in

(15)

(16)

where

(17)

has units of and is defined as the SRA time constant.
The sine-wave damping function has the form

(18)

where

(19)

It is defined such that its slope is at . Substituting (18)
into (11) and (13) results in

(20)

(21)

To facilitate the comparison between these two damping
functions, we set , where is the quench
period, and define the ratio

(22)

This allows us to make the substitution . Using
(22) and solving (15) and (20) at allows us to evaluate
the super-regenerative gain for both damping functions as

(23)

(24)

The ratio between the two gains is

(25)

For a ratio of , the gain of the SRA using a ramp damping
function is greater (23 dB) compared with the sine-wave
damping function. Of course the amplitude of the sine-wave
damping function could be increased to increase its gain, but
this would widen the bandwidth of the SRA, increasing noise
and degrading selectivity. This will be shown in Section III-B
along with the effects of on the frequency response of the
SRA. Fig. 3 shows and for . For time
values near zero, the two sensitivity functions are similar. How-
ever, approaches zero more quickly and is reduced to 0.01
at while is only reduced to 0.161. Later sections
show this gives the ramp damping function a superior frequency
response. Generally speaking, the SRA’s gain grows exponen-
tially with and the frequency response improves. For a given
value of , this requires longer quench cycles and, therefore,
lower bit rates creating a tradeoff. The tradeoff favors increasing

, however, since the gain grows as whereas the bit rate is
reduced linearly.
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Fig. 3. Sensitivity functions for sawtooth/ramp and sine damping functions
�� � ��.

III. CONVOLUTION MODEL OF SRA SOLUTION

In this section, we show that (12) closely resembles a con-
volution and exploit this quality to perform frequency-domain
analysis on the SRA. Typically, we are interested in the value of
the envelope of near the end of the cycle , since
that is when the maximum super-regenerative gain is achieved.
Since the output is oscillatory, we are not interested in its value
exactly at , but rather at some time near when the sinusoidal
term is at its peak. In that time range, (12) can be rewritten as
the nearly exact approximation

(26)

where

(27)

(28)

The approximation in (26) assumes , although this
assumption is not necessary and can be avoided at the expense
of increased complexity by modifying the argument of .
Equation (26) can be rewritten as the convolution

(29)

which is valid for time . Note that if the value of is
desired near some time other than , that time instant can be
substituted in the argument of .

As discussed in Section II-D, always has a maximum
value of unity at , and typically drops sharply for .
Fig. 4 illustrates the effects of this property on (12) when
is the sinusoid

(30)

As shown in Fig. 4(a) and(b), grows to a maximum value
of unity as the damping function approaches zero. Fig. 4(c) il-
lustrates the time derivative of , and Fig. 4(d) shows
which has the form of a time-windowed version . As shown

Fig. 4. (a) Damping function, (b) sensitivity function, (c) time derivative of
sinusoidal input, (d) windowed input, and (e) ����.

in Fig. 4(e), is oscillatory and grows for , but then
flattens out. This occurs because becomes very small for
values of . As mentioned previously, is only valid
(and nearly exact) for . However, Fig. 5 shows that it
is generally a very good approximation for values of .
In fact, if , (29) can be simplified further by removing
the term without much loss to accuracy since is very
nearly zero for

(31)

This approximation has the same effect as setting (for
, but not ) and results in an optimistic estimate of the fre-

quency response. Nonetheless, we will use this approximation
for the subsequent hand calculations and then show numerical
examples that clarify its effects.

A. SRA Response to an Arbitrary Input

The key benefit to the convolution model is that it enables
the use of frequency-domain techniques that facilitate the anal-
ysis of an SRA’s response to arbitrary input signals. Taking the
Fourier transform of (31) yields the frequency-domain signal

(32)
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Fig. 5. Numerical simulations comparing the exact equation ����with the con-
volution approximation � ��� for � � � and (a) � � � , (b)� � � ��� ,
and (c) � � � � �� .

The time convolution of with a sinusoid yields the result
that only the values of at are important. Taking
the inverse Fourier transform of (32) gives for an arbitrary
input signal

(33)

Since is the time-domain product of and , its
Fourier transform is the convolution

(34)

Substituting (33) into (10) yields the solution for the output
voltage of the SRA which is usually accurate for

(35)

A more accurate solution can be used for numerical analysis that
incorporates the term in (29) by using the function

(36)

in place of in (34).
Equations (35) and (34) define the general form of an SRA’s

output. For an input current , the output voltage is propor-
tional to the resonator’s characteristic impedance , its enve-
lope grows exponentially, its filtering characteristics are deter-
mined by the sensitivity function , and it oscillates at its res-
onant frequency.1 Typically, SRAs are used in amplitude mod-
ulation systems where the phase of the input signal carries no

1Since this is the result of linear analysis, the injection locking phenomenon
is not modeled. For a large input signal whose frequency is close to � , the
oscillation frequency may become the same as the input signal’s as the output of
the SRA grows and nonlinearities take effect. However, since it is the envelope
of the output that is of interest, this does not affect the practical operation of the
SRA.

information. As a result, the sinusoidal term in (35) is often re-
moved by connecting the output of the SRA to an envelope de-
tector whose output is

(37)

B. SRA Response to a Sinusoidal Input

The filtering qualities of the SRA become more clear by an-
alyzing its response to a sinusoidal input. For the input signal
(30), (34) becomes

(38)

It is illustrative to use a specific example of a sensitivity func-
tion to appreciate the qualities of . For the ramp damping
function described in Section II-D, is Gaussian, such that
its Fourier transform is also Gaussian

(39)

where

(40)

is the SRA frequency constant. As a result, when is eval-
uated at , the term is practically zero and (38),
evaluated at , simplifies to

(41)

Substituting (41) into (35) yields the SRA’s output for a sinu-
soidal input

(42)

For the specific case of the ramp damping function (14), the
SRA’s output is

(43)

Fig. 6 shows a graphical representation of the mathematics
used to find (42) and (43). Since the input signal is sinusoidal, its
time derivative, , effectively “up-converts” and trans-
lates its spectrum to . The resulting bandpass signal is
then convolved with which is equivalent to multiplying
its spectrum with two Dirac delta functions. The result is
a sinusoidal term whose amplitude depends on the mag-
nitude of evaluated at . Finally, the sinusoidal
term is multiplied by the SRA’s time-dependent gain re-
sulting in .

Solution (42) is valid for general damping functions while
(43) describes the response of an SRA with a ramp damping
function. There are five important observations that can be made
from (43) that are generally true for other damping functions.
First, the output voltage is linearly proportional to the ampli-
tude of the input current and the characteristic impedance of the
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Fig. 6. Graphical representation of SRA response to a sinusoidal input signal.

resonant tank. Second, there is a constant gain term that depends
on the damping function and the input signal’s frequency. Third,
the SRA filters the input current with a Gaussian-shaped filter
centered about the tank’s resonant frequency, , with a band-
width defined by the frequency constant, . Fourth, the output
voltage has an envelope that grows very rapidly (an exponen-
tial with a squared time exponent) and is dependent on . And
fifth, the output voltage is oscillatory with a frequency equal to
the tank’s resonant frequency.

The constant and its inverse, , practically define the re-
sponse of the system in terms of both frequency selectivity and
gain. Since is set by the application requirements, (43) shows
that the only two design variables are , the slope of the damping
function, and . If the slope of the damping function is reduced,
selectivity improvesbutgain is reduced.Toachievethesamegain,
each cycle must be longer (since the gain increases with time)
resulting in a bit rate reduction. However, the tradeoff between
gain, bandwidth, and bit rate are not linear as with most systems
since the bit rate and bandwidth are inversely proportional to ,
whereas gain grows as . This means that bit rate and band-
width are traded for the square root of the log of gain.

Fig. 7 illustrates the frequency response of the SRA for var-
ious values of . The waveform represents the result
of the approximation used in (31) where the limits of integra-
tion are extended to . The other lines show that the pri-
mary effect of reducing is a degradation in the frequency re-
sponse of the SRA manifested by rising sidelobes. However, for

the SRA provides more than 55 dB of attenuation in the
stopband, confirming that (31) is a good approximation. Fig. 8
compares the frequency response of the ramp and sine-wave
damping functions discussed in Section II-D and confirms that
the ramp damping function is preferable since it achieves higher
gain and lower sidebands for a given value of .

The fact that a system with a single active device with very
small intrinsic gain is able to filter and amplify with almost lim-
itless gain speaks to the SRA’s compelling potential in low-
power applications. The analysis above also shows a peculiar
quality of the super-regenerative receiver: its filter bandwidth
is not strictly a function of resistance, capacitance, and induc-
tance, but also of the characteristics of its damping function.
This means that high selectivity can be achieved despite limita-
tions in the Q of an LC resonator.

C. SRA Response to Multiple Sinusoids

Analyzing the SRA’s response to multiple sinusoidal inputs is
simplified by the convolution model since superposition holds.
For an input signal comprising the sum of multiple sinusoidal

Fig. 7. Frequency response using a sawtooth/ramp damping function and
varying values of � .

Fig. 8. Frequency response using a sawtooth/ramp and sine damping functions
�� � ��.

inputs

(44)

is evaluated using (34) and superposition

(45)
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The terms are ignored because is a baseband
signal. This result can be combined with subsequent results to
analyze the effect of blockers on the performance of the SRA.

D. SRA Response to a Pulse-Shaped Sinusoidal Input

Recent publications show that there is a benefit to using
spread-spectrum techniques in super-regenerative receivers to
improve their sensitivity [9], [12]. This can be done by shaping
OOK pulses, such that a one is represented by the pulsed
sinusoid

(46)

where is the quench period and

(47)

is the energy of the normalized pulse. The pulse is defined
to have a maximum value of unity at and is equal to
zero for and . The term is used such
that the pulse-shaped input signal has the same energy over a
quench period as a CW input signal. The input signal (46), has
the spectrum

(48)

Substituting (48) in (34) and evaluating at yields

(49)

Since both and are baseband signals, the first inte-
gral in (49) can be discarded, yielding

(50)

If and are even-symmetric, which is usually the case,
their Fourier transforms are real and even-symmetric, making
the second integral zero. Even without symmetry, this term is
negligible since for values of that are
significant. This means that the second integral in (50) can be
discarded, leaving

(51)

This can be interpreted to mean that is proportional to
the cross-correlation of and .

Solving this convolution and substituting its result in (42)
gives the response of the SRA to a general pulse-shaped sinu-
soidal input. Time-domain techniques are used in [9] to show

that there is an optimum pulse shape that results in the max-
imum output signal energy for a given input signal energy. This
can also be shown in the frequency domain by finding the pulse
shape that maximizes . By Schwarz’s inequality

(52)

with equality occurring only if , a condition
achieved if .2 In that case, is

(53)

This means that, for a given input signal energy, the output
signal energy is maximized if . In that case, the
output signal energy is independent of the damping function and
input pulse shape or energy. Instead it depends on the signal’s
amplitude, the SRA’s resonant frequency, and the quench fre-
quency. Note that using the optimal pulse shape comes at the
expense of a wider transmitted signal. This is not always bene-
ficial if a narrow transmission spectral mask is required. How-
ever, for spread spectrum (e.g., ultrawide band) systems, this
could be exploited to maximize the sensitivity of a super-regen-
erative receiver [9], [10].

IV. RECEIVER SENSITIVITY ANALYSIS

Modern SRA-based digital receivers are used almost ex-
clusively to demodulate OOK signals. Their task is to detect
whether a given transmitted bit was a one or a zero. For
linear-mode SRA’s, the actual detector implementation usually
involves using a filter or envelope detector to measure the peak
amplitude of the SRA’s output, which occurs at time . Since
the phase information of the incoming signal is lost, the receiver
is inherently non-coherent. When a one is sent, the signal at
the input of the SRA is a pulsed sinusoid, and when a zero is
sent, the input signal is modeled as additive white Gaussian
noise (AWGN) (ignoring blockers). To calculate the sensitivity
of the receiver, the probability density functions of these two
cases must be solved. Any gain component that is common to
both, such as , can be ignored since it does not affect the
signal-to-noise ratio of the output signal. As a result, only the
statistics of in (35) [or (37)] are needed. It is important
to note that is not a function of time and can, therefore,
be treated as a constant. To simplify the notation and clarify
that it is a current, we define

(54)

Since the input signal contains a stochastic component, is a
random variable.3 To find the BER of the system for a given
input signal amplitude, we must find the probability density

2Schwarz’s inequality allows for an arbitrary constant of proportionality that
is omitted here since ���� and ���� have normalized peak values of unity by
definition.

3Bold typeface is used to denote a random variable.
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functions for given that a one or a zero was transmitted; re-
spectively and .

When a zero is transmitted, the incoming signal is strictly
AWGN. Since is the result of linear operations on
Gaussian noise, it too has a Gaussian density function (though
it is no longer white). is, therefore, a Gaussian random
variable, and , being its absolute value, has the Rayleigh
density

(55)

where is the variance of [13].
When a one is transmitted, the incoming signal can be mod-

eled as the sum of a pulse-shaped sinusoid and AWGN, re-
sulting in a rician density. However, for acceptable BER, the
signal power must be considerably larger than the noise power,
allowing a Gaussian density approximation for

(56)

where is the value of in response to a pulsed si-
nusoidal input signal of amplitude and frequency . For a
general pulse shape and damping function, can be calculated
using (51) as

(57)

where

(58)

is defined as the correlation coefficient [13]. However, there are
two specific cases of particular interest.

1) Case 1, : For the case with no pulse shaping,
can be derived using (41)

(59)

For the specific case of a ramp damping function, is

(60)

2) Case 2, : When the pulse shape is matched to
the sensitivity function, is the same as (53)

(61)

From the analysis presented in Section III-D, the signal en-
ergy should be maximized for . For any sensitivity
function, the benefit achieved by using that optimized pulse
signal, therefore, is

(62)

Since the output noise power is the same in both cases, this gives
a direct measure of the benefit in output signal-to-noise ratio.
For the specific case of a ramp damping function, the benefit is

(63)

making the substitution defined in (22). Recall, however, that
(59) is based on the approximation in (53) which improves in
accuracy for larger values of and becomes very accurate for

. For a value of , the improvement in sensitivity is
7.6 dB. It bares repeating that this benefit comes at the expense
of a wider transmitted signal.

The final step required to find the sensitivity of an SRA is to
solve for , the variance of .

A. Noise Analysis Using the Convolution Model

The convolution model is particularly useful for analyzing
an SRA’s response to noise. The noise component of the input
signal is modeled as a current with the power spectral den-
sity (PSD)

(64)

It is important to recall that noise and sinusoids are power sig-
nals with PSDs (i.e., they have infinite energy, but finite power).
The sensitivity function , however, is an energy signal and
does not have a PSD; instead it has an energy spectral density
(ESD) [13]. Multiplying a power signal with an energy signal re-
sults in an energy signal, so is an energy signal and its ESD
is the frequency-domain convolution of and :

(65)

The overline in (65) is used to signify expected value since
is a random process and its Fourier transform, , is also
random. Appendix A shows that this convolution, evaluated at

simplifies to

(66)

For the specific case of a ramp damping function, .
The variance is a measure of the output noise energy,

whereas is a measure of the output signal energy. The sen-
sitivity of the receiver can be solved using these two quantities
and the density functions (55) and (56).

B. Solving for the BER and Sensitivity

As shown in [13], the error probability for an OOK receiver
with densities (55) and (56) can be closely approximated as

(67)

Assuming that ones and zeros are equally likely means that the
power received is

(68)

where is the parallel resistance in Fig. 1(a). The noise density
can be written as the noise from multiplied by some noise

factor which reflects the noise contribution from other sources
(such as active devices) and depends on the actual topology of
the SRA

(69)
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Combining (57), (67)–(69), and (81) leads to the input signal
power requirement for a given BER (or, equivalently, )

(70)

This equation holds for general damping functions and pulse
shapes. Using the definitions of and , it can be used
to determine the sensitivity of a receiver that uses a generic
linear-mode, slope-controlled SRA. Solutions for two important
cases discussed previously are given below, each using a ramp
damping function.

1) Case 1, , Ramp Damping: For this case,
, and . Substituting these values

in (70) yields

(71)

For a desired BER of , (71) can be written in dBm as

(72)

As might be expected, (72) shows that the sensitivity degrades
with higher SRA bandwidths as is common with other receiver
types. This equation is independent of and is accurate as long
as is big enough. In previous sections it was shown that re-
ducing affects the frequency response by increasing the side-
lobes. But, as shown in Fig. 7, even for values of as small as
2, the numerical frequency response matches the estimate up to
20 dB of attenuation, implying that the sensitivity functions pre-
sented are accurate for .

The relationship between sensitivity and SRA bandwidth also
affects the maximum data rate. The maximum data rate for an
SRA receiver is , and is achieved if the SRA is operated
synchronously as in [5] and [11]. When synchronization is not
used, the quench frequency must be greater than twice the band-
width of the incoming signal since the SRA acts as a sampling
device and must satisfy the Nyquist criterion. In either case, the
bit rate is proportional to the quench frequency. For a particular
value of (chosen to achieve a desired frequency response and
gain), is proportional to the quench frequency and there is a
direct tradeoff between sensitivity and bit rate [11].

2) Case 2, , Ramp Damping: If the optimal pulse
shape is used, and , such that

(73)

which can be written as

(74)

In dBm, this is equivalent to

(75)

In this case, the sensitivity is a very strong function of . To
appreciate the tradeoff, recall from (46) that the incoming cur-
rent is proportional to . When Gaussian pulses are used,

. This means the peak-to-average ratio of

the transmitted signal’s amplitude (which is regulated for some
standards) is proportional to . Some spread spectrum stan-
dards, however, allow for high peak-to-average ratios, making
this technique very attractive. As mentioned already, the bit rate
is proportional to the quench frequency and, therefore, inversely
proportional to . However, for the case of a matched pulse, the
relationship is favorable since reducing the bit rate by im-
proves the sensitivity by (9 dB). Trading off sensitivity for
bit rate by changing is also an option, but it is important to
note that for a pulsed signal the transmitted spectrum depends
on . When using Gaussian pulses, as in this analysis, the spec-
trum mask is set by , which would be Gaussian with
a frequency standard deviation of .

C. Using a Time Random Variable for Detection

The probability density functions described by (55) and (56)
are defined for the amplitude of the SRA’s envelope at the end
of each quench cycle. In OOK receivers, the optimum threshold
for determining whether the received bit is a one or a zero is
the point at which the two PDFs intersect [13]. This point is
approximately equal to . To achieve the minimum BER,
the demodulator in the receiver should be able to determine this
value accurately. Doing so is most important when the input
signal is small since this is when there is the greatest amount of
overlap between the PDFs. When the input signal is large, the
accuracy of the threshold is less critical since there is a wider
range of values that will yield an acceptable BER.

The analysis up to now assumes that the SRA is a linear
system and, as a result, is linearly proportional to the input
signal. However, if the SRA is actually highly nonlinear (typ-
ically compressive), may not be a good measure of the
input signal’s amplitude, and choosing the optimal detection
threshold becomes challenging. This is illustrated in Fig. 9.
If the system is linear, the SRA’s envelope is larger at time
when a one is received and smaller when a zero is received as
in Fig. 9(d). If the system is highly compressive, however, the
difference in amplitude at time could be largely independent
of the input signal’s amplitude, making detection very difficult
[as shown in Fig. 9(e)].

Ensuring linearity in the SRA can be achieved practically
by using feedback to actively limit its gain to a sufficiently
low value. Such techniques have been used for many decades
[8], but present two main problems. First, the gain-control loop
adds complexity and power consumption. Second, the system
still requires that the SRA maintain a significant linear range.
In modern systems, the primary benefit of SRAs is their ul-
tralow-power operation, and a primary means of keeping the
power consumption at a minimum is by reducing the supply
voltage. The requirement to maintain a wide linear voltage range
threatens these benefits since it typically requires a high supply
voltage. This motivates a desire to achieve the benefits of SRAs
mentioned up to now while eliminating the need for a wide
linear voltage range.

One way of doing this is to use a different means of detec-
tion that extracts information from the input signal before the
SRA’s output envelope grows to the point of becoming non-
linear. This can be done by setting a voltage limit, , inside
the linear range of the SRA and measuring the length of time
required for the SRA’s envelope to grow to that level. This is
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Fig. 9. SRA (a) transconductance � ���, (b) damping function ����, (c) input
current � ���, (d) output voltage for linear system � ���, and (e) output voltage
for compressive nonlinear system.

defined as the trigger-time, and it is a random variable [11]. For
the case of a ramp damping function, setting in (37)
and solving for yields the random variable

(76)

where

(77)

As shown in Appendix B, the relationship between the proba-
bility density functions of and is

(78)

Substituting (55) and (56) into (78) yields

(79)

(80)

While the density functions of are far messier than those of
, they allow accurate detection even when the SRA is highly

nonlinear. This is because can be set to a small value such
that the trigger-time is extracted before the SRA’s amplitude
causes nonlinearities in the system. Furthermore, the probability

Fig. 10. Schematic of SRA and envelope detector.

of error in detection must, intuitively, be the same as if were
used since there is a one-to-one mapping between their densi-
ties.

V. MEASUREMENT RESULTS

Fig. 10 shows the schematic for a simple SRA based on
a common-base Colpitts oscillator and an envelope detector.
The resonant frequency was arbitrarily chosen in the 400-MHz
frequency range reserved for Medical Implant Communication
Services (402–405 MHz), but much higher frequencies could
be used. Typically an LNA is used to isolate the antenna from
the SRA so that its output signal is not radiated. But to better
characterize the SRA and verify the theory presented, the LNA
was excluded. A common-base configuration was chosen for
the SRA to facilitate input matching, and the quench signal
used to control the damping function was connected to the base
through a simple low-pass filter. A high Q inductor was used
in the resonant tank so that the effective parallel resistance is
dominated by well controlled resistances (i.e., of the tran-
sistor, 50 source impedance, and 560 bias resistor). While
this is suboptimal for performance, it allows for more accurate
performance prediction. The envelope detector is similar to
[5] and a sawtooth damping function similar to Fig. 9(b) was
generated using an arbitrary waveform generator. A low supply
voltage of 1.0 V was used to show that accurate detection is
possible using the trigger-time technique despite a very narrow
linear range.

Fig. 11 shows the output of the envelope detector for different
input power levels of CW signals at the resonant frequency of
the SRA. The dashed lines show the predicted shape of the en-
velope compared to the measurement results shown by the solid
lines. Two sample signals are shown for the case when no input
signal was used to show the random nature of the signal am-
plitude. Note that the measured results are in agreement with
predictions when the SRA envelope is small, but diverge signifi-
cantly as the nonlinearities of the system lead to signal compres-
sion. If this SRA had been designed to function strictly in the
linear region, the SRA gain would have been set much lower (by
reducing or , for example) or the supply voltage would have
been made larger. Using the trigger-time technique eliminated
the need to do so. Instead, the threshold voltage was set to a low
value ( mV) and the trigger-time was measured using
the histogram function of a digital oscilloscope. From Fig. 11 it
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Fig. 11. Theoretical and measured envelope detector waveforms for��� dBm
and��� dBm CW input signals and two sample waveforms for no input signal
(i.e., only noise).

is clear that there is good agreement between theory and mea-
sured results for values of below 15 mV, so the measured
trigger-time PDFs should be in agreement with theory.

Fig. 12 shows the measured and theoretical probability
density functions of for varying input signal levels. For
this measurement, the quench signal of the SRA was set to
300 kHz, and its slope resulted in a value of MHz for

. The density functions were extracted by weighting the time
histograms such that they integrate to unity. The theoretical
distribution functions of are also plotted according to (79)
and (80). Clearly, there is excellent agreement between the the-
oretical and measured signals for input power levels up to
dBm. For larger input signals the theory becomes less accurate
because is no longer sufficiently larger than , as required
for the convolution approximation to be accurate. This is not
important, however, since selecting the detection threshold
is trivial when the input signal is large (i.e., there is a wide
range of values for which the BER will meet requirements).
In contrast, accurately modeling the PDFs for low input signal
levels is very important since it enables the selection of the
optimum detection threshold, resulting in the best sensitivity.
Fig. 12 shows there is excellent agreement between theory and
measurements for small input signal levels. Furthermore, the

dBm value is only specific to this design and only impor-
tant in the sense that it represents an input signal significantly
larger than the sensitivity level. For receiver designs with much
lower or higher sensitivities, the theoretical PDFs are expected
to match for a wide enough range of input signal values to
allow for optimal threshold determination and, thereby, optimal
sensitivity.

The BER, which is equivalent to the probability of error ,
was calculated by finding the optimal threshold for a given input
power and integrating the portion of each PDF that was on the
wrong side. For example, for a -dBm input signal, the op-
timum threshold was determined to be 0.66 s. The probability
of error was found by integrating the dBm PDF from

s to s and adding the result to the integral of
the noise PDF from 0 to 0.66 s. Using this technique, it was
determined that a BER of was achieved for a -dBm

Fig. 12. Measured and theoretical probability density functions for the random
variable � .

Fig. 13. Frequency response of the SRA for � ����� � 	�
 kHz�
�
��
.

CW input signal. This corresponds to an OOK modulated input
signal level of dBm (since its average power would be 3 dB
lower), which matches the predicted value given by (72) for a
noise factor of (3.6 dB).

The dc current consumption of the SRA was 500 A for
a total power consumption of 500 W. The theoretical noise
factor was calculated using techniques similar to those used in
[11]. The effective resistance at the emitter of the SRA tran-
sistor is the parallel combination ,
where is the source impedance of the signal gener-
ator and mV is the small signal
emitter resistance of the BJT. The effective resistance across
the resonator is

[14]. The BJT’s thermal noise density is given by
and the resistor’s noise density is given

by . The noise factor is,
therefore, (4.6 dB). This means that the
theoretical noise factor and the measured noise factor are within
1 dB, confirming the accuracy of the theory.

Fig. 13 shows the filtering characteristics of the SRA resulting
from the attenuating effect of frequency mismatch between the
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SRA’s resonator and the input signal. For this measurement, the
quench signal of the SRA was set to 300 kHz, and its slope re-
sulted in a value of kHz for . This, in effect, de-
scribes the selectivity of the SRA. The measurement was made
by finding the average value of for a -dBm CW input
signal at 403 MHz (the SRA’s resonant frequency) and then
sweeping the frequency and power level of the input signal. For
each frequency, the input signal power was swept until the value
of was the same as for the reference signal ( dBm, 403
MHz). Measured results show excellent matching compared to
(43) up to about 25 dB of attenuation. Beyond such levels, other
phenomena, including the effects of finite , begin to dominate,
making the measurement less accurate.

VI. CONCLUSION

A frequency-domain approach to analyzing super-regener-
ative amplifiers has been presented. Sensible approximations
have been made that enable a convolution model to describe part
of the time-varying solution. The convolution model was used to
find the SRA’s response to arbitrary deterministic and stochastic
signals, with specific examples of its response to a single sinu-
soid, multiple sinusoids, a pulsed sinusoid, and AWGN. These
solutions were then used to find the sensitivity of a synchronous
SRA receiver to an OOK signal with and without pulse shaping,
and the benefits of both cases were discussed. The probability
density functions were found for a trigger-time random variable
that can be used for OOK detection and helps avoid the prob-
lems associated with SRA nonlinearity. Finally, experimental
data was presented that matched the theory with excellent agree-
ment.

APPENDIX A
CONVOLUTION YIELDING THE VARIANCE OF

The first step to finding the variance of is to solve the
convolution

(81)

Expanding this solution and substituting yields

(82)

Since is an even function, the second integral can be
discarded. A further simplification can be made by observing
that is a baseband signal, and therefore becomes
very small for values of well below . As a result, over the
range of for which has a significant value, the term
in the third integral is much smaller than the term in the
first integral. This means the third integral can also be discarded
resulting in the simplified solution for the variance

(83)

where is the energy of the sensitivity function defined as

(84)

APPENDIX B
SOLVING FOR THE PDF OF

In Section IV-C the trigger-time random variable, was
introduced to help alleviate some of the problems created by
the nonlinearity of the SRA’s active elements. is related
to through (76), and its probability density function is the
derivative of its cumulative distribution function [15] given by

(85)

(86)

(87)

(88)

Differentiating (88) with respect to yields the PDF of
with respect to the PDF of

(89)
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